56 research outputs found

    Crack channelling mechanisms in brittle coating systems under moisture or temperature gradients

    Get PDF
    Abstract: Crack channelling is predicted in a brittle coating-substrate system that is subjected to a moisture or temperature gradient in the thickness direction. Competing failure scenarios are identified, and are distinguished by the degree to which the coating-substrate interface delaminates, and whether this delamination is finite or unlimited in nature. Failure mechanism maps are constructed, and illustrate the sensitivity of the active crack channelling mechanism and associated channelling stress to the ratio of coating toughness to interfacial toughness, to the mismatch in elastic modulus and to the mismatch in coefficient of hygral or thermal expansion. The effect of the ratio of coating to substrate thickness upon the failure mechanism and channelling stress is also explored. Closed-form expressions for the steady-state delamination stress are derived, and are used to determine the transition value of moisture state that leads to unlimited delamination. Although the results are applicable to coating-substrate systems in a wide range of applications, the study focusses on the prediction of cracking in historical paintings due to indoor climate fluctuations, with the objective of helping museums developing strategies for the preservation of art objects. For this specific application, crack channelling with delamination needs to be avoided under all circumstances, as it may induce flaking of paint material. In historical paintings, the substrate thickness is typically more than ten times larger than the thickness of the paint layer; for such a system, the failure maps constructed from the numerical simulations indicate that paint delamination is absent if the delamination toughness is larger than approximately half of the mode I toughness of the paint layer. Further, the transition between crack channelling with and without delamination appears to be relatively insensitive to the mismatch in the elastic modulus of the substrate and paint layer. The failure maps developed in this work may provide a useful tool for museum conservators to identify the allowable indoor humidity and temperature fluctuations for which crack channelling with delamination is prevented in historical paintings

    Frictionless bead packs have macroscopic friction, but no dilatancy

    Get PDF
    The statement of the title is shown by numerical simulation of homogeneously sheared packings of frictionless, nearly rigid beads in the quasistatic limit. Results coincide for steady flows at constant shear rate γ in the limit of small γ and static approaches, in which packings are equilibrated under growing deviator stresses. The internal friction angle ϕ, equal to 5.76 ±\pm 0.22 degrees in simple shear, is independent on the average pressure P in the rigid limit. It is shown to stem from the ability of stable frictionless contact networks to form stress-induced anisotropic fabrics. No enduring strain localization is observed. Dissipation at the macroscopic level results from repeated network rearrangements, like the effective friction of a frictionless slider on a bumpy surface. Solid fraction Φ remains equal to the random close packing value ≃ 0.64 in slowly or statically sheared systems. Fluctuations of stresses and volume are observed to regress in the large system limit, and we conclude that the same friction law for simple shear applies in the large psystem limit if normal stress or density is externally controlled. Defining the inertia number as I = γ m/(aP), with m the grain mass and a its diameter, both internal friction coefficient μ\mu∗ = tan ϕ and volume 1/Φ increase as powers of I in the quasistatic limit of vanishing I, in which all mechanical properties are determined by contact network geometry. The microstructure of the sheared material is characterized with a suitable parametrization of the fabric tensor and measurements of connectivity and coordination numbers associated with contacts and near neighbors.Comment: 19 pages. Additional technical details may be found in v

    Solid behavior of anisotropic rigid frictionless bead assemblies

    Get PDF
    We investigate the structure and mechanical behavior of assemblies of frictionless, nearly rigid equal-sized beads, in the quasistatic limit, by numerical simulation. Three different loading paths are explored: triaxial compression, triaxial extension and simple shear. Generalizing recent results [1], we show that the material, despite rather strong finite sample size effects, is able to sustain a finite deviator stress in the macroscopic limit, along all three paths, without dilatancy. The shape of the yield surface is adequately described by a Lade-Duncan (rather than Mohr-Coulomb) criterion. While scalar state variables keep the same values as in isotropic systems, fabric and force anisotropies are each characterized by one parameter and are in one-to-one correspondence with principal stress ratio along all three loading paths.The anisotropy of the pair correlation function extends to a distance between bead surfaces on the order of 10% of the diameter. The tensor of elastic moduli is shown to possess a nearly singular, uniaxial structure related to stress anisotropy. Possible stress-strain relations in monotonic loading paths are also discussed

    Railway-induced ground vibrations – a review of vehicle effects

    Get PDF
    This paper is a review of the effect of vehicle characteristics on ground- and track borne-vibrations from railways. It combines traditional theory with modern thinking and uses a range of numerical analysis and experimental results to provide a broad analysis of the subject area. First, the effect of different train types on vibration propagation is investigated. Then, despite not being the focus of this work, numerical approaches to vibration propagation modelling within the track and soil are briefly touched upon. Next an in-depth discussion is presented related to the evolution of numerical models, with analysis of the suitability of various modelling approaches for analysing vehicle effects. The differences between quasi-static and dynamic characteristics are also discussed with insights into defects such as wheel/rail irregularities. Additionally, as an appendix, a modest database of train types are presented along with detailed information related to their physical attributes. It is hoped that this information may provide assistance to future researchers attempting to simulate railway vehicle vibrations. It is concluded that train type and the contact conditions at the wheel/rail interface can be influential in the generation of vibration. Therefore, where possible, when using numerical approach, the vehicle should be modelled in detail. Additionally, it was found that there are a wide variety of modelling approaches capable of simulating train types effects. If non-linear behaviour needs to be included in the model, then time domain simulations are preferable, however if the system can be assumed linear then frequency domain simulations are suitable due to their reduced computational demand

    Micromechanical predictions of TRIP steel behavior as a function of microstructural parameters

    No full text
    Micromechanically-based models are used to mimic the martensitic phase transformations in retained austenite and the elasto-plastic behavior of the adjacent ferritic phase. The numerical simulations concern TRIP steel samples with a finite number of grains of retained austenite embedded in a polycrystalline ferrite-based matrix. Parametric analyses are performed in order to investigate the effect of the variation of microstructural properties on the stability of retained austenite, and thus on the overall mechanical response. The microstructural parameters considered are (i) the initial volume fraction of the retained austenite, (ii) the elasto-plastic properties of the surrounding ferritic matrix, (iii) the crystallographic orientations of the ferritic and austenitic grains, and (iv) the carbon concentration in the retained austenite. The results show that the effective strength of TRIP steels increases with the carbon concentration in the retained austenite, but it depends non-monotonically on the initial volume fraction of retained austenite. It is shown that the overall strength and the martensitic transformation rate depend strongly on the crystallographic orientations of the grains and the properties of the surrounding matrix. This information is useful for the optimization of the mechanical characteristics of TRIP steels and the improvement of their processing parameters. The numerical predictions are in good qualitative agreement with experimental observations
    corecore